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HEDGEHOGS IN LEHMER’S PROBLEM
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To Gunther Cornelissen, with warm wishes, on the occasion of reaching the age
(for the first time!) that can be written as a sum of two positive squares in two different ways.

Niet elke egel is stekelig!

Abstract

Motivated by a famous question of Lehmer about the Mahler measure, we study and solve its analytic
analogue.

2020 Mathematics subject classification: primary 11R06; secondary 30E10, 33C45.
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1. Introduction

Several deep arithmetic questions are known about polynomials with integer coeffi-
cients. One of them raised by Lehmer in the 1930s asks, for a monic irreducible poly-
nomial P(x) =

∏d
j=1(x − αj) ∈ Z[x], whether the quantity M(P(x)) =

∏d
j=1 max{1, |αj|}

can be made arbitrarily close to but greater than 1. The characteristic M(P(x)) is known
as the Mahler measure [1]; in spite of the name coined after Mahler’s work in the
1960s, many results about it are rather classical. One of them, due to Kronecker, says
that M(P(x)) = 1 if and only if P(x) = x or the polynomial is cyclotomic, that is, all its
zeros are roots of unity.

A related question, usually considered as a satellite to Lehmer’s problem, about
the so-called house of a nonzero algebraic integer α defined through its minimal
polynomial P(x) ∈ Z[x] as α = maxj |αj|, was posed by Schinzel and Zassenhaus in
the 1960s and answered only recently by Dimitrov [2]. He proved that α ≥ 21/(4d) for
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any nonzero algebraic integer α which is not a root of unity; the latter option clearly
corresponds to α = 1.

Dimitrov’s ingenious argument transforms the arithmetic problem into an analytic
one. In this note we discuss the potential of Dimitrov’s approach to Lehmer’s problem.

2. Principal results

Consider a monic irreducible noncyclotomic polynomial P(x) =
∏d

j=1(x − αj) in
Z[x] of degree d > 1 and assume that the polynomial

∏d
j=1(x − α2

j ) ∈ Z[x] is irreducible
as well. (Otherwise the Mahler measure of P(x) is bounded from below through
the measures of irreducible factors of the latter polynomial.) As in [2], Dimitrov’s
cyclotomicity criterion together with Kronecker’s rationality criterion and a theorem
of Pólya imply that the hedgehog

K = K(β1, . . . , βn) =
n⋃

k=1

[0, βj] =
d⋃

j=1

[0,α2
j ] ∪

d⋃
j=1

[0,α4
j ],

whose spines originate from the origin and end up at α2
j ,α4

j for j = 1, . . . , d, has
(logarithmic) capacity (or transfinite diameter) t(K) at least 1. Then Dubinin’s theorem
[3] applies, which claims that t(K) ≤ 4−1/n maxj |βj| (with equality attained if and
only if the hedgehog K is rotationally symmetric), and produces the estimate for
α1 = (maxj |βj|)1/4 since n ≤ 2d.

When dealing with Lehmer’s problem instead, one becomes interested in estimating
the ‘Mahler measure of the hedgehog’, namely the quantity

∏n
j=1 max{1, |βj|}, because

any nontrivial (bounded away from 1) absolute estimate for it would imply a nontrivial
estimate for the Mahler measure of P(x). In this setting, Dubinin’s theorem only
implies the estimate

∏n
j=1 max{1, |βj|} ≥ 41/n for a hedgehog of capacity at least 1,

which depends on n. The Mahler measure of the rotationally symmetric hedgehog
on n spines, which is optimal in Dubinin’s result, is equal to 4 (thus, independent
of n), which certainly loses out to the Mahler measure 1.91445008 . . . of the ‘Lehmer
hedgehog’ attached to the polynomial x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 but also
to the measure 3.07959562 . . . of the hedgehog constructed on Smyth’s polynomial
x3 − x − 1. The following question arises in a natural way.

QUESTION 1. What is the minimum of
∏n

j=1 max{1, |βj|} taken over all hedgehogs K =
K(β1, . . . , βn) of capacity at least 1?

Notice that answering this question for hedgehogs of capacity exactly 1 is sufficient,
since the capacity satisfies t(K1) ≤ t(K2) for any compact sets K1 ⊂ K2 in C.

In order to approach Question 1 we use a different construction of hedgehogs
outlined in Eremenko’s post on the question in [5] with details set out in [6]. Any
hedgehog K = K(β1, . . . , βn) of capacity precisely 1 is in a bijective correspondence
(up to rotation!) with the set of points z1, . . . , zn on the unit circle with prescribed
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238 J.-W. M. van Ittersum, B. Ringeling and W. Zudilin [3]

positive real weights r1, . . . , rn satisfying r1 + · · · + rn = 1. Namely, the mapping

F(z) =
n∏

k=1

((z − zk)(z−1 − zk))rk

is a Riemann mapping of the complement of the closed unit disk to the complement
Ĉ \ K of hedgehog. It is not easy to write down the corresponding βj explicitly, but for
their absolute values we get

|βj| = max
z∈[zj−1,zj]

|F(z)| = max
z∈[zj−1,zj]

n∏
k=1

|z − zk|2rk for j = 1, . . . , n,

where we conventionally take z0 = zn and understand [zj−1, zj] as arcs of the unit circle.
This means that if C ≥ 1 is the minimum of

n∏
j=1

max
{
1, max

z∈[zj−1,zj]

n∏
k=1

|z − zk |rk

}

taken over all n and all possible weighted configurations z1, . . . , zn, then C2 is the
minimum in Question 1.

Furthermore, in the spirit of [4] observe that from continuity considerations it
suffices to compute the required minimum C for rational positive weights r1, . . . , rn.
Assuming the latter and writing rj = aj/m for positive integers a1, . . . , an and m =
a1 + · · · + an, we look for the mth root of the minimum of

n∏
j=1

max
{
1, max

z∈[zj−1,zj]

n∏
k=1

|z − zk |ak

}
=

m∏
j=1

max
{
1, max

z∈[z′j−1,z′j ]

m∏
k=1

|z − z′k |
}
,

where z′1, z′2, . . . , z′m is the multi-set

z1, . . . , z1︸����︷︷����︸
a1 times

, z2, . . . , z2︸����︷︷����︸
a2 times

, . . . , zn, . . . , zn︸����︷︷����︸
an times

with prescribed weights all equal to 1. This means that it is enough to compute the
minimum for the case of equal weights, r1 = · · · = rn = 1/n, and we may give the
following alternative formulation of Question 1.

QUESTION 2. What is the minimum Cn of
n∏

j=1

max
{
1, max

z∈[zj−1,zj]

n∏
k=1

|z − zk|
}1/n

taken over all configurations of points z1, . . . , zn on the unit circle |z| = 1? The points
are not required to be distinct and [zj−1, zj] is understood as the corresponding arc of
the circle, z0 is identified with zn.

Though there is no explicit requirement on the order of precedence, the minimum
corresponds to the successive locations of z1, . . . , zn on the circle.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972721000654
Downloaded from https://www.cambridge.org/core. Max Planck Institut für Mathematik, on 29 Mar 2022 at 07:50:42, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972721000654
https://www.cambridge.org/core


[4] Hedgehogs in Lehmer’s problem 239

A comparison with Dubinin’s result suggests that good candidates for the minima
in Question 2 may originate from configurations in which all factors in the defining
product but one are equal to 1. In our answer to the question we show that this is
essentially the case by computing the related minima C∗n explicitly.

THEOREM 3. For the quantity Cn we have the inequality Cn ≤ C∗n, where C∗n =
(Tn(21/n))1/n and

Tn(x) =
	n/2
∑
k=0

(
n
2k

)
(x2 − 1)kxn−2k

denotes the nth Chebyshev polynomial of the first kind.

THEOREM 4. For the quantity C∗n in Theorem 3 we have the asymptotic expansion

C∗n = 1 + ν − 1
4
ν3 +

5
96
ν5 − 1

128
ν7 + O(ν9)

in terms of ν =
√

(log 4)/n, as n→ ∞. In particular, (C∗n)
√

n → e
√

log 4 and C∗n → 1 as
n→ ∞.

Thus, our results imply that the minimum in Question 1 is equal to 1, meaning
that an analogue of Lehmer’s problem in an analytic setting is trivial. This has no
consequences for Lehmer’s problem itself, as we are not aware of a recipe to cook up
polynomials in Z[x] from optimal (or near optimal) configurations of z1, . . . , zn on the
unit circle.

3. Proofs

PROOF OF THEOREM 3. We look for a configuration of the points z1, . . . , zn on the
unit circle such that the maximum of |Q(z)|, where Q(z) = (z − z1) · · · (z − zn), on all
the arcs [zj−1, zj] but one is equal to 1:

max
z∈[zj−1,zj]

|Q(z)| = |Q(z∗j )| = 1 for z∗j ∈ (zj−1, zj), where j = 2, . . . , n.

At the same time, the kth Chebyshev polynomial Tk(x) = 2k−1xk + · · · is known to
satisfy |Tk(x)| ≤ 1 on the interval −1 ≤ x ≤ 1, with all the extrema on the interval being
either −1 or 1. Note that Tk(x) has k distinct real zeros on the open interval −1 < x < 1
and satisfies Tk(1) = (−1)kTk(−1) = 1. Therefore, for n = 2k even,

Q(z) = zk Tk

(
21/k

(z + z−1

2
− 1

)
+ 1

)
,

we get a monic polynomial of degree n with the desired properties; its zeros z1, . . . , zn
ordered in pairs, so that zn−j = zj = z−1

j for j = 1, . . . , k, correspond to the real zeros
21/k((zj + z−1

j )/2 − 1) + 1 of the polynomial Tk(x) on the interval −1 < x < 1. Then

max
z∈[zn,z1]

|Q(z)| = max
|z|=1
|Q(z)| = |Q(−1)| = |Tk(1 − 21+1/k)| = Tk(21+1/k − 1) = T2k(21/(2k)),

where the duplication formula Tk(2x2 − 1) = T2k(x) was applied.
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240 J.-W. M. van Ittersum, B. Ringeling and W. Zudilin [5]

The duplication formula in fact allows one to write the very same polynomial Q(z)
in the form

Q(z) = ±(−z)n/2 Tn(21/n−1
√

2 − (z + z−1) ),

and this formula gives the desired polynomial, monic and of degree n, for n of any
parity. If we set k = 	(n + 1)/2
, the zeros z1, . . . , zn of Q(z) pair as before, that is,
zn−j = zj = z−1

j for j = 1, . . . , k, with the two zeros merging into one, z(n+1)/2 = 1 for

j = k when n is odd, so that 21/n−1
√

2 − (zj + z−1
j ) for j = 1, . . . , k are precisely the k

real zeros of the polynomial Tn(x) on the interval 0 ≤ x < 1. This leads to the estimate

max
z∈[zn,z1]

|Q(z)| = max
|z|=1
|Q(z)| = |Q(−1)| = Tn(21/n)

for both even and odd values of n.
Finally, we remark that the uniqueness of Q(z), up to rotation, follows from the

extremal properties of the Chebyshev polynomials. �

PROOF OF THEOREM 4. For this part we cast the Chebyshev polynomial Tn(x) in the
form

Tn(x) =
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

2
=

xn

2
· ((1 +

√
1 − x−2)n + (1 −

√
1 − x−2)n)

leading to

Tn(21/n) = (1 +
√

1 − e−ν2 )n + (1 −
√

1 − e−ν2 )n

in the notation ν =
√

(log 4)/n. Since

√
1 − e−ν2 =

( ∞∑
k=1

(−1)k−1ν2k

k!

)1/2
= ν

(
1 +

∞∑
k=2

(−1)k−1ν2k−2

k!

)1/2

= ν ·
(
1 − 1

4
ν2 +

5
96
ν4 − 1

128
ν6 +

79
92160

ν8 − 3
40960

ν10 + O(ν12)
)
,

we conclude that the term (1 −
√

1 − e−ν2 )n = O(εn) for any choice of positive ε < 1,
hence

(Tn(21/n))1/n = (1 +
√

1 − e−ν2 ) · (1 + O(εn)),

and the required asymptotics follows. �

4. Speculations

Dimitrov’s estimate t(K) ≥ 1 for the capacity of the hedgehog K = K(β1, . . . , βn)
assigned to a polynomial in Z[x] is not necessarily sharp, and one would rather expect
to have t(K) ≥ t for some t > 1. By replacing the polynomial in the proof of Theorem 3
with

Q(z) = ±(−z)n/2 Tn(21/n−1t
√

2 − (z + z−1) )
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[6] Hedgehogs in Lehmer’s problem 241

and assuming (or, better, believing!) that the corresponding minimum in Question 2
is indeed attained in the case when all but one of the factors are equal to 1, we
conclude that the minimum is equal to (Tn(21/nt))1/n. The asymptotics of the Chebyshev
polynomials then converts this result into the answer

inf
n=1,2,...

K=K(β1,...,βn)
t(K)≥t

n∏
j=1

max{1, |βj|} ≥ t +
√

t2 − 1

to the related version of Question 1. This is slightly better, when t > 1, than the trivial
estimate of the infimum by t from below.

In another direction, one may try to associate hedgehogs K to polynomials in a
different (more involved!) way, to achieve some divisibility properties for the Hankel
determinants Ak that appear in the estimation t(K) ≥ lim supk→∞ |Ak |1/k

2
of the capacity

on the basis of Pólya’s theorem. Such an approach has the potential to lead to
some partial (‘Dobrowolski-type’) resolutions of Lehmer’s problem. Notice, however,
that the bound for t(K) in Pólya’s theorem is not sharp: numerically, the Hankel
determinants Ak = det0≤i,j<k(ai+j) constructed on (Dimitrov’s) irrational series

∞∑
k=0

akxk =
√

(x − α2
1)(x − α2

2)(x − α2
3) (x − α4

1)(x − α4
2)(x − α4

3)

=
√

(1 − x + 2x2 − x3)(1 + 3x + 2x2 − x3) ∈ Z[[x]]

for Smyth’s polynomial x3 − x − 1 = (x − α1)(x − α2)(x − α3) satisfy |Ak | ≤ Ck for
some C < 2.5 and all k ≤ 150, so that it is likely that lim supk→∞ |Ak |1/k

2
= 1 in this

case.
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